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Exciton-polariton band structure in quantum-dot lattices
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Abstract. We develop a theory of exciton polaritons in three-dimensional quantum-dot lattices
with the period comparable to the light wavelength. A system of the Maxwell equations and
nonlocal material relation are used to derive the dispersion equation in a rather general and
well-converging form. A possibility of analytical description of the dispersion is questioned and
discussed. The photon band structure is calculated for a face-centered-cubic lattice with spherical
dots of the radius exceeding the bulk-exciton Bohr radius. The dispersion along the F - X
and F - L lines is characterized by a strong anticrossing between bare transverse photon and
exciton branches and by remarkable overlapping band gaps. Approaching the U and W points
the exciton-polariton branches converge and the gap becomes negligible.

Recently van Coevorden et al. [1] have calculated the optical band structure of a
three-dimensional (3D) lattice of resonant two-level atoms. They have solved numeri-
cally the dispersion equation for light waves in a face-centered-cubic atomic lattice and
demonstrated that, in the certain range of parameters, there exists an overlap of pho-
tonic band gaps in all directions in the frequency region near the two-level resonance.
Here we consider the photonic (or more precisely, exciton-polaritonic) band structure
of lattices formed by a 3D periodic array of quantum dots (QDs).

We start from the Maxwell equations

AE -grad div E = - D( ,

div D =0 (1)

for the electric field E and the displacement vector D. The nonlocal material equation
relating D and E is taken in the form (see [2])

D(r) = EbE(r) + 47rPexc(r) (2)

47iPe,..(r) = Tr(w) E b4a(r) J 4a(r')E(r')dr' . (3)
a I

Here a are the lattice translation vectors enumerating quantum dots, 4ba (r) = Do (r - a)
is the envelope function P'exc.(re, rh; a) of an exciton excited in the ath QD at coinciding
electron and hole coordinates: (ba(r) = IF,..(r, r; a). The other notations are

3r(wo) 2, EbWLTwOaB (4)
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WLT and aB are the exciton longitudinal-transverse splitting and Bohr radius in the
corresponding bulk semiconductor, wO is the QD-exciton resonance frequency, Eb is
the background dielectric constant which is assumed to coincide with the dielectric
constant of the barrier material. In the following we neglect the overlap of exciton
envelope functions Ta and 'Pal with a zA a' so that excitons excited in different dots
are assumed to be coupled only via electromagnetic field.

It follows from Eq. (2) that div E = -( 4 71/b) div Pexc which allows to rewrite the
first Eq. (1) as

AE + k2E = -47k02 (1 + k- 2 grad div ) P,, (5)

where k0 = w/c, k = konb = wnb/c and nb = ,I-b.

We seek for Bloch-like solutions of Eq. (5) satisfying the translational symmetry
EK (r + a) = exp (iKa) EK (r) where the wave vector K is defined within the first
Brillouin zone. The exciton-polariton dispersion w(K) can be shown to satisfy the
equation

Det116. - R.(w, K)I = 0, (6)

where c, /3 = x, y, z, 6,, is the Kronecker symbol and, for QD lattices,

=oT(w) E IIK+blN2S.a0(K + b) (7)R - Z(O) b IK + bl2 - k2 I 7

[4r rrQa Q¢3

IQ (Do (r)eiQ'dr, S,3 = .13- Q. , (8)

b are the reciprocal lattice vectors and vo is the volume of the lattice primitive cell.
Similarly to [1] we consider a face-centered-cubic lattice with the lattice constant

a and the unit-cell volume vo = a3/4. It is convenient to introduce a dimensionless
parameter P = (7rVf3c/alwonb) 3 and the dimensionless frequency Q = w/wo. The
calculation is performed for spherical QDs with the radius R exceeding the Bohr radius
aB in which case we have

(2R ) 3/ 2  sinQRIQ = 7 - (9)
k aB / QR[72 - (QR) 2]

Then Eq. (7) can be transformed into

Q2

R,,3(Q, K) = N -Q2 l-- (Q, K) , (10)

Orao (Q, K) = f(IK + blR) SaQ(K + b)
b -2(- Q 2 (K + b)

N-64 WLt (,R)3 , [ 72 sinx ] 2

N =~ , f(x) = L( -) (12)

Q(Q) = cQ/wonb. Eq. (6) is equivalent to the three separate equations Rj(Q, K) = 1
where Rj (j = 1, 2, 3) are eigenvalues of the matrix R•,,. For high-symmetry points of
the Brillouin zone, the symmetry imposes certain relations between the R,3 components
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Table 1. Dispersion equations written in terms of Raf3 for different K points in the Brillouin zone.

K (27r/a) Nonzero components of R,,1 3 Dispersion equations
1 (0,0,0) Rx,=Ryy=R, Rx,=l
X (O0,1) R~x=Ryy, R- Rx,=-, R_=-
L (1/2, 1/2, 1/2) R•=Rx, Rf•=R(.y(a /3) Rx - R.y=1, Rx,+2R.y=I
W (1/2, 0, 1) R, R,,=R-,_ Rx,=l, R,,=l
K (3/4,0,3/4) Rx= ,, Ry R, R.R±R-=l, RB,=l
U (1/4, 1/4, 1) R~x=Ryy, R-, Ry=R. Rx+R)C=l, R R ==I

2
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-3

-4-
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Fig 1. Exciton-polariton dispersion near the exciton resonance frequency wo in a face-centered-
cubic lattice of spherical QDs characterized by the following set of parameters: P = 1.1, R/a =
1/4 and WLT/WO = 5 x 10-4. The dashed lines show the photon dispersion in the empty lattice,

i.e. for WLT = 0, the dotted horizontal line indicates the value w = Wo.

and the eigenvalues Rj can be readily expressed via these components as illustrated in
Table 1 for the points F,X,L, W,K and U.

Further simplifications follow taking into account a small value of the parameter N
in Eq. (10) since, in semiconductors, the ratio WLT/WO typically lies between 10-4 and
10-3. Then in the frequency region given by the condition IQ_ - 1I < p'!/3 _ 1 one can
readily use the approximate equation Q - 1 ; (N/2) oj (1, K) where oj are eigenvalues
of the o, matrix.

Fig. 1 shows the photonic band structure calculated for the dots of radius R = a/4
and for P = 1.1, WLT/Wo = 5 x 10-4. The dispersion on the A line is characterized by
a giant anticrossing between the branches of bare transverse photon and exciton modes.
At the X point, the gap is determined by the separation between the longitudinal and
lower transverse branches, it is still remarkable and exceeds 0.5WLT. However near the
points U and W the excitron-polariton branches converge and the gap almost disappears.
Note that the anticrossing can be described with a high accuracy by retaining in the
sum over b in Eq. (11) the two terms due to b = 0, -(47r/a)(0, 0, 1) for the A points
and b = 0, -(27r/a)(1, 1, 1) for the A points.

The 3D QD arrays with periods comparable with the light wavelength (P ; 1)
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and with sizes exceeding the bulk-exciton Bohr radius could be grown artificially or
by embedding semiconductor microcrystals into the pores of porous materials like the
synthetic opal [3]. It should be mentioned that the developed theory takes into ac-
count a contribution of only one exciton resonance which is valid if the separation
between the exciton size-quantization levels is much larger than the bulk value of
the exciton longitudinal-transverse splitting, WLT. In the opposite limit of extremely
large bulk-exciton translational effective mass one can use the local material relation
D(r) = E(r, w)E(r) as it was done by Sigalas et al. [4] for phonon-polaritons in a
two-dimensional lattice consisting of semiconductor cylinders.

E. L. 1. acknowledges partial support from Russian Foundation of Basic Research.
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